

STEP BY STEP TUTORIAL ON ASTROIMAGE J

IPSA PARIS AERO 4 |2021 CAPITAINE LOÏC

Summary :

I/ Introduction	3
II/ Image calibration	4
III/ Image preprocessing phase	7
IV/ Multi-aperture photometry	9
V/ Obtaining the light curve	11

ASTROIMAGE J TUTORIAL

I/ Introduction

This guide is a step by step tutorial aimed at obtaining a light curve on AstroImageJ. Following the steps is essential in order to obtain the desired result.

First of all, the accuracy of the curve depends not only on good photometric treatment. Indeed, the type of camera, telescope, and the weather influence the quality of the images taken. Thus, we must consider the dataset uncertainties and understand that he is not sure of getting what you want despite all goodwill.

This tutorial presents all the image processing steps (including calibration) that can be performed on the software. It is possible to speed up the processing process by doing steps on software on PRISM but in our case we show that everything is possible on AstroImageJ.

AstroImageJ looks like this at startup:

Most of the tools in this software will not be useful for our study, we are only using part of the software.

• Opening an image

In the File tab, you can first open an image by clicking Open. This window will then appear :

II/ Image calibration

Let's take a closer look at the controls that will serve us

As we can see the RA and DEC boxes are empty. These correspond to the equatorial data system. This celestial coordinate system is a reference system (therefore independent of the position of the observer). If these data are not visible and you observe the mention "NO WCS" then you will have to calibrate the images.

You have two options: preprocess the images on another software like PRISM or do it with AstroImageJ. We will present here the processing with this software for the reasons mentioned in the introduction.

• Opening of the sequence of images

Close the window containing the image and return to the AstroImageJ start bar. In the File tab, go to Import then Image Sequence. This window will then open :

🕌 Open Image	Sequence			X
Regarder dans :	Wasp48b	~	G 🗊 📂 🗔 -	
-	Nom	`	Modifié le	Ту ^
× 1	pipelineout		05/04/2021 12:40	De
Accès rapide	WASP-48b-1		30/03/2021 18:39	Pr
	△WASP-48b-2		30/03/2021 18:43	Pr
	△WASP-48b-3		30/03/2021 18:45	Pr
Bureau	WASP-48b-4		30/03/2021 18:47	Pr
_	WASP-48b-5		30/03/2021 18:49	Pr
-	△WASP-48b-6		30/03/2021 18:50	Pr
Bibliothèques	WASP-48b-7		30/03/2021 18:52	Pr
	WASP-48b-8		30/03/2021 18:53	Pr
	WASP-48b-9		30/03/2021 18:55	Pr
Ce PC	(A) WASP-48b-10		30/03/2021 18:57	Pr
4	🛆 WASP-48b-11		30/03/2021 18:58	Pr
1	🛆 WASP-48b-12		30/03/2021 19:00	Pr
Réseau	🛆 WASP-48b-13		30/03/2021 19:02	Pr 🗸
	<			>
	Nom du fichier :		~	Ouvrir
	Types de fichiers : Tous les	fichiers (*.*)	~	Annuler

Select any photo, press Open and a new window will appear :

🦠 Sequence Options	×
Number of images: 128 Starting image: 1 Increment: 1 Scale images: 100 % File name contains:	
or enter pattern:	
Convert to RGB Sort names numerically Use virtual stack	
3358 x 2536 x 178 (5782.4MB)	
OK Cancel He	Ip

You must then enter the exact number of images in your dataset, check the same boxes and press OK. A window with the selected image opens as it did the first time. Now we will be able to start the calibration.

• Alignment of images to a reference system

In the WCS tab, go to "Plate solving Astronometry.net with options" and you will then have to enter the following parameters :

Astrometry Settings				—		×
User Key:	hymfpzrrcofzqdrr	(Get key from:	nova.astrometry.net)			
Use Custom Server:	Enable	http://nova.astrometry.ne/				
Auto Save:	Enable	IMPORTANT WARNING:	overwrites original image			
Skip Images With WCS:	Enable					
Annotate:	I Enable	Radius (pixels)				
Add To Header:	Enable	30.00 🜩				
Median Filter:	- Enable	Filter Radius (pixels)				
Peak Find Options:	🗹 Limit Max Peaks	Max Peak (ADU)	Noise Tol (StdDev)	Max	Num Stars	50 📥
				~ ~		
Centroid Near Peaks:	Enable	Radius (pixels)	Sky Inner (pixels)	Sky C	uter (pixel	s)
		20.00 ¥	50.00 -		40	.00 v
Constrain Plate Scale:	Enable	Plate Scale (arcsec/pix)	Tolerance (arcsec/pix)			
		0.500 -	0.250			
Constrain Sky Location:	Enable	Center RA (Hours)	Center Dec (Degrees)	Rad	ius (arcmin)
		19:24:38.961	+55:28:23.33		4	0.0
SIP Distortion Correction	Enable	SIP Order				
on Distoration Conection.		2 🜩				
Show Results Log:	Enable	START	CANCEL			

Warning : it is very important to enter this User Key and to check Auto Save.

Once the parameters have been entered, click on Start and the calibration will be able to begin. You will be able to know if your manipulations are correct if you observe on the command bar this sentence:

You will also be able to observe blue circles around the stars: calibration is in progress.

Once the calibration is complete for a photo, you will get this result with yellow lines. You can also observe that there are coordinates for RA and DEC now.

Once all the images are calibrated and all have RA and DEC, you can proceed to the next step. Check this data carefully, an image without this information will not be taken into account during the processing steps that will follow.

III/ Image preprocessing phase

Close the window and return to the software start bar. Click on the blue and red DP (CCD Data Processor). Two windows open, one of which is of particular interest to us.

DP CCD Data Pro	cessor		-	
File Preferences	i View			
Control	Options	Directory	Filename/Pattern	Totals
Science Image	e Processing			
	Sort Num	C:\Users\\oicc\Documents\AFRO4\Semestre 8\CIRI\Wasp48b\\Wasp48b\	🕨 * fits	177
- Filonomo Nun	mber Filtering			
Filename Nur	nderFillening	Min: 0 - Max 10000000 -	* fits	177
Bias Subtracti	on			
Build	🔵 ave 🔘 med		bias_	0
Enable			mbias.fits	0
Dark Subtracti	ion			
Build	🔵 ave 🔘 med		dark_	0
Enable	scale 🗹 deBias		mdark.fits	0
Flat Division				
Build	🔾 ave 🔘 med		🕨 flat_	0
Enable	Remove Gradient		mflat.fits	0

In Science Image Processing, click on Directory to select the folder where all your calibrated images are located. You can optionally add bias, dark and flat (obtained with PRISM) if your dataset contains them (handling is the same).

Image Correcti	ion											
Enable Lin	nearity Correction	New pixel value =	0.0E0 🗘 + 1.0E0 🕻	• (PixVal) + 0.0E	E0 🔹 × (PixVal) ² + 0.0E0	* (PixVal) ³						
Remove O	Outliers 🗹 Bright	Dark Radius:	2 - Threshold:	50 🜩								
FITS Header Up	odates											
			Target Coordinate Source		Observatory Location Source							
General	Plate Solve	* 📉 🤊	Coordinate Converter manual ent	ry ~	FITS header latitude and longitude $\qquad \qquad \lor$							
Save Calibrate	Save Calibrated Images											
Enable	16 32	Sub-dir: pipelineout	Suffix:	out	Format:	GZIP						
Post Processir	ng											
M-Ap	Save Image			Macro 1 C:\Users\loicc\			0					
M-Plot	Save Plot			Macro 2 C:\Users\loicc\			0					
Control Panel												
Polling Ir	nterval 0 🌲	Set 2	START	PAUSE	SET	Processed: Remaining:	0 177					

Going down to the bottom of the page you can check the appropriate boxes for FITS Header Updates and choose the right parameter for the "Target Coordinate Source" command.

Once everything has been prepared, you can now click on START and the treatment will start. During this phase make sure that the software does not stop until you see "Remaining: 0". If during the execution of the treatment, AstroImageJ returns you an error message, check that you have carried out each step correctly and chosen the correct parameters.

• Opening of the pre-processed image sequence

When processing is complete, close the CCD Data Processor window and return to the start bar. You will repeat the previous command. Go to the File tab, Import then Image Sequence.

🕌 Open Image	Sequence		\times
Regarder dans :	Wasp48b ~	G 🤌 📂 🛄 -	
1	Nom	Modifié le	Ty ^
X	pipelineout	05/04/2021 12:40	Dc
Accès rapide	△ WASP-48b-1	30/03/2021 18:39	Pr
	△WASP-48b-2	30/03/2021 18:43	Pr

Unlike last time, you have a "pipelineout" folder created. Click on it and you will have access to all the processed photos. All processed images contain the suffix "_out".

pipelineout	G 🕸 📂 🛄 -	
Nom	 Modifié le 	ту ^
△WASP-48b-1_out	01/04/2021 18:10	Pr
△WASP-48b-2_out	01/04/2021 18:11	Pr
△WASP-48b-3_out	01/04/2021 18:13	Pr
△WASP-48b-4_out	01/04/2021 18:14	Pr
△WASP-48b-5_out	01/04/2021 18:16	Pr
△WASP-48b-6_out	01/04/2021 18:18	Pr
△WASP-48b-7_out	01/04/2021 18:20	Pr
△WASP-48b-8_out	01/04/2021 18:22	Pr
△WASP-48b-9_out	01/04/2021 18:23	Pr
△WASP-48b-10_out	01/04/2021 18:25	Pr
△WASP-48b-11_out	01/04/2021 18:27	Pr
△WASP-48b-12_out	01/04/2021 18:28	Pr
△WASP-48b-13_out	01/04/2021 18:30	Pr
WASP-48b-14_out	01/04/2021 18:31	Pr 🗸

Select any image, indicate the total number of images processed and click OK. Your image opens and we will now move on to studying your exoplanet.

• Identification of our target star

Before taking the photometric measurement, you need to know the location of your exoplanet. To find out, enter the name of your exoplanet on a browser and find its RA and DEC.

Then go to the site https://aladin.u-strasbg.fr/AladinLite/ and enter the coordinates. It will give you a picture of the location of your exoplanet. Compare with your photo on AstroImageJ to find it. Once you know where it is, we can start the next step.

IV/ Multi-aperture photometry

Go back to your window with your image and select the "perform multi-aperture photometry" box (both red and blue circles)

This window is displayed. You must uncheck and check the boxes as indicated otherwise you will not get results.

s.,	Multi-Aperture Measurements	×								
	Radius of object aperture < > 23 Inner radius of background annulus < > 40									
	Outer radius of background annulus < > 60									
	 □ Use previous 4 apertures (1-click to set first aperture location) ☑ Use RA/Dec to locate aperture positions □ Use single step mode (1-click to set first aperture location in each image) □ Allow aperture changes between slices in single step mode (right click to advance image) 									
	✓ Centroid apertures (initial setting) □ Halt processing on WCS or centroid error ✓ Remove stars from background ✓ Assume background is a plane									
	Vary aperture radius based on FWHM FWHM factor (set to 0.00 for radial profile mode):)								
	Prompt to enter ref star apparent magnitude (required if target star apparent mag is desired) Update table and plot while running Show help panel during aperture selection CLICK 'PLACE APERTURES' AND SELECT APERTURE LOCATIONS WITH LEFT CLICKS. THEN RIGHT CLICK or <enter> TO BEGIN PROCESSING. (to abort aperture selection or processing, press <esc>)</esc></enter>									
	Place Apertures Aperture Settings Cance	1								

Once everything has been followed, click on "Aperture Settings". This window will appear and you should have the same settings. For the CCD part, it depends on the camera so by default, if you don't know them, enter those ones.

Aperture Photometry Settings		×
Radius of object aperture	< > 25	
Inner radius of background annulus	< > 40	
Outer radius of background annulus	< > 60	
Use variable aperture (Multi-Aperture only)		
FWHM factor (set to 0.00 for radial profile mode)	< > 1.40	
Radial profile mode normalized flux cutoff	0.010 (0 < cuffoff < 1 ; default = 0.010)	
Centroid apertures	ntroid method 🔽 Fit background to plane 🛛	Remove stars from backgnd 🔲 Mark removed pixels
✓ Use exact partial pixel accounting in source ape	tures (if deselected, only pixels having centers ins	side the aperture radius are counted)
Prompt to enter ref star absolute mag (required	f target star absolute mag is desired)	
List the following FITS keyword decimal values in the following	n measurements table:	
Keywords (comma separated):	JD_SOBS, JD_UTC, HJD_UTC, BJD_TDB, AIRMA	SS,ALT_OBJ,CCD-TEMP,EXPTIME,RAOBJ2K,DECOBJ2K
CCD gain	0.300000 [e-/count]	
CCD readout noise	5.000000 [e-]	
CCD dark current per sec	0.003000 [e-/pix/sec]	
or - FITS keyword for dark current per exposure [e-/pix]		
✓ Saturation warning ('Saturated' in table) (red bor	der in Ref Star Panel)	
for levels higher than	55000	
🔽 Linearity warning (yellow border in Ref Star Pan	il)	
for levels higher than	45000	
		OK More Settings Cancel

Click on OK then "Place Apertures". You will first take as T1 (for Target) the star around your exoplanet. Then, you have to take several targets to refine the calculations. It is important to take close targets.

For this, it is necessary to choose stars which have a similar magnitude and characteristics. Look closely at the "Peak" and "Int Cnts" that appear when you hover your mouse over a star. They should be fairly close to the values of your T1.

For example, you will get this. Once the choice of targets is complete (no need to take more than five), click on "Enter" on your computer and the analysis will begin.

V/ Obtaining the light curve

The scan ends and many windows open. The window below interests us because it allows us to configure the graph. We can determine the X-range and Y-range, give a title and especially fit and normalize region selection. This information will show the precise times when the transit starts and ends.

For the "Multi plot Y-data" window, this is used to plot the graphs. What interests us is Target 1 because it is our study star. In the Y-data column, select rel_flux_T1. Then check the Plot box and you will get your first graph.

₽ N	😰 Multi-plot Y-data																			
Dat Se	ta Ne	W Plot	Auto Scale	X-data		Input in Mag	Y-data 💡		Auto Error	Fu	Inction	Y-operand	Color		Sym	ool	Lines	Bin Size	Smo- oth	Len- gth
1			\checkmark	default	~		rel_flux_T1	~		none	~	~	dark gray	~	dot	~		1 -		31 🔺
2	l		\checkmark	default	~		rel_flux_T1	~		none	~	~	blue	~	dot	~		1 -		31 🔹
3	l			default	~		rel_flux_C3	~		none	~	~	pink	~	dot	~		1 🔹		31 🔹
4	l			default	~		rel_flux_C4	~		none	~	~	red	~	dot	~		1 🔹		31 🔹
5	l			default	~			~		none	~	~	orange	~	dot	~		1 🔹		31 🔹
6	l			default	~			~		none	~	~	yellow	~	dot	~		1 🔹		31 -

Here's what you can get. The study does not end here though. Indeed, here you have obtained a normalized scatter plot of the values of the target star. This is not the end result.

Wasp-48b

• Exoplanet transit light curve

We must therefore return to the Multi plot Y-data window and slide to the right of the window to obtain the parameters that interest us. Head to the Fit Mode column. You can observe that for the first line, corresponding to our normalized light curve, it is selected on "off".

For the second line we will select another fit mode, corresponding to the transit and more suited to the light curve. So choose the one you see in the screenshot.

Color	r Symbol Lir		Lines	Bin Size	Smo- oth	Len- gth	Fit Mode	Trend Select	Trend Coefficient	Trend Dataset	Norm/ Mag Ref	
dark gray	\sim	dot	~		1 +		31 🔹	off 🗸	$\odot \circ \circ$	0	~	· ·
blue	~	dot	~		1 🔺		31 🔹	 ~	$\odot \circ \circ$	0	~	· ·
pink	\sim	dot	~		1 -		31 🔹	off \lor	$\odot \circ \circ$	0	~	···

ASTROIMAGE J TUTORIAL

A new window will appear. Take time to observe that the parameters are present (circled in green). If you have aligned your images with the World Coordinate System, all boxes are filled in automatically.

You just have to go down to the Plot Settings section. Uncheck the Residuals and check the boxes as on the screen (Show Model and Show in legend). This will allow you to achieve the smoothed transit light curve you want.

$(R_{p} / R_{*})^{2}$	0.007418441		0.009255799		0.00	4627899 🜲		0.009255799 🐥				
a / R _*	8.117892244		8.465711558			7.0 🔺		1.0				
т _с	2457900.470532075		2457900.47			0.015 🜲		0.01				
Inclination (deg)	89.999999877		86.0			15.0 🜲		1.0 🜲				
Linear LD u1	0.30000000		0.3			1.0 🜲		0.1				
Quad LD u2	0.679740541		0.3			1.0 🔺		0.1				
	bt14 (d)		t14 (hms)		tau (d)	ρ* (cgs)	(e)Sp	TRp (Rjup)				
Calculated from model	0.000 0.12814	19	03:04:32 0.1077	9 0.	010210	1.1234	G5V	0.84				
Detrend Parameters												
Use Parameter	Best Fit	Lock	Prior Center	Use	Prior \	Width	Cust	StepSize				
	•		0.0			1.0 🔺		0.1 🔺				
			0.0			1.0 🔹		0.1 🔺				
			0.0			1.0 🔺		0.1				
Fit Statistics												
Eit Statistics	RMS (norm)		chi²/dof	BIC		dof						
	0.002779	0.830776 190.5011 171 142.0627										
Plot Settings												
Show Model	Show in legend	Line Color Line Width										
Show Residuals	Show in legend	Lin mage	e Color — Line Wid	th 1 🔹 do	Symbol Symbol Color Shift dot 0.0 +							
Fit Control	Eitlada			t Talarana	- Max	Allowed Stop		Stees Takes				
Fit Control	Auto Update Fit	Upd	ate Fit Now	1.0E-1		20,000	•	2205				

Go back to the first columns and return to Y-data. For the second line, select rel_flux_T1 as for the first line, then check the Plot box.

If all the steps have been followed, you will then have the same thing as on the second line.

Data Set	New Col	Plot	Auto Scale		X-data	Input in Mag	Y-data 💡	Auto Error	Function	Y-operand	Color	Symbol	Lines	Bin Size	Smo- oth	Len- gth	Fit Mode	1
1			\checkmark	default	~		rel_flux_T1	~	none v	~	dark gray 🗸 🗸	dot ~		1 +		31 🔹	off 🗸 🖲)
2		\checkmark	\square	default	~		rel_flux_T1	~	none ~	~	blue ~	dot ~		1 -		31 🔹)

You can now admire your light curve corresponding to the transit of your exoplanet around the target star. Congratulations, you have succeeded!

Wasp-48b